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Vector Finite Element Modeling of the Full-Wave
Maxwell Equations to Evaluate Power Loss in Bent

Optical Fibers
J. Koning R. Rieben and G. Rodrigue

Abstract

We measure the loss of power incurred by the bending of a single mode step-indexed optical fiber using vector finite element
modeling of the full-wave Maxwell equations in the optical regime. We demonstrate fewer grid elements can be used to model
light transmission in longer fiber lengths by using high-order basis functions in conjuntion with a high order energy conserving
time integration method. The power in the core is measured at several points to determine the percentage loss. We also demonstrate
the effect of bending on the light polarization.

I. I NTRODUCTION

The accurate characterization of signal loss due to wave attenuation is a valuable measure of the reliability of a communication
system. This is particularly important in light wave communication systems where wave attenuation limits the performance of
the optical fiber as a data transmission channel. Although spectacular success has been achieved in the development of low-loss
optical fibers, signal attenuation can still occur from a variety of sources. Intrinsic glass manufacturing inconsistencies can
cause wave attenuation through the scattering and absorption of light energy. Attenuation from these sources can rangefrom
0.5 db/km to 1000 db/km and is dependent on the material of theparticular optical fiber.

Wave attenuation from external sources are more difficult tocharacterize as they can arise from many factors. This paper
focuses on measuring wave attenuation due to the bending of an optical fiber. Local bending causes wave attenuation by
changing the refractive properties of the fiber thereby causing light energy to radiate away from the guiding direction.Power
loss from fiber bending is generally estimated using theoretical predictions obtained from an analysis of the equationsthat
result from an asymptotic assumption on the cladding radius, curvature radius or refractive index difference, [1], [2]. Power
losses from the transition of the fiber from straight to curve, [3], or at the outer portion of the evanescent field, [4], canbe
derived in this manner. The disadvantage of these approaches is their reliance on techniques of asymptotic analysis whereby
mathematical terms in equations are rendered unimportant because of their dependence on parameters that are assumed tobe
very small. Power loss measurements from these approaches can only be assumed accurate under extreme conditions.

We demonstrate in this paper how power loss measurements of abent optical fiber can be effectively calculated by numerically
solving the full wave Maxwell equations. Discretization ofMaxwell’s equations will be provided by the finite element method on
hexahedral grids, [5], [6]. This will allow for power loss measurements to be calculated under more realistic curved geometries.
High-order Nedelec basis functions are used to provide numerical approximations to the fields, [7], [8]. Then, coarse grids can
be used to represent the geometry while still maintaining numerical accuracy and preserving the continuity propertiesof the
fields across material interfaces. High order integrationsare used to time evolve the equations so that energy conservation and
numerical dispersion errors are kept at a minimum, [9]. We should mention that other power loss computations on bent fibers
have been done. However, assumptions are made on the bent fiber so that the dynamics of the light waves can be modeled by
a reduced Maxwell equations on an equivalent straight waveguide, [10], [11].

II. M AXWELL ’ S EQUATIONS

The dynamical behavior of light waves in a lossless regionΩ are modeled by the full-wave Maxwell equations

ε ∂
∂t E = ∇× (µ−1B) in Ω
∂
∂t B = −∇×E in Ω

(1)

We impose the physical restriction that there are no free electric or magnetic charges in the problem domain, yielding the
constraints

∇ · (εE) = 0 in Ω
∇ ·B = 0 in Ω (2)
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Initial-boundary values are given by
n̂×E = Ebc on∂Ω
E(t) = Eic at t = t0
B(t) = Bic at t = t0

(3)

The symbol∂Ω is the two dimensional boundary of the domainΩ with an outwardly directed unit normaln̂. The symbolsε and
µ are the electric permitivity and magnetic permeability describing the material properties of the regionΩ. These parameters
are free to be tensor valued, possibly discontinuous functions of space; however, we impose the restriction that they are linear
and independent of time.

The variational form of (1) is
∫

Ω
ε

∂
∂t

E ·W =
∫

Ω

1
µ

B ·∇×W −
∮

∂Ω
(
1
µ

B×W) · n̂ (4)
∫

Ω

1
µ

∂
∂t

B ·F = −
∫

Ω

1
µ

∇×E ·F

for all test functionsW,F, such that

W ∈ H(curl,Ω) = {u : ∇×u ∈ [L2(Ω)]3} (5)

F ∈ H(div,Ω) = {u : ∇ ·u ∈ L2(Ω)} (6)

We employ a Galerkin approximation using a finite dimensional vector basis expansion of arbitrary polynomial degree [6]

E(r , t) ≈
NW

∑
i

ei(t) W i(r), W i ∈ H(curl,Ω) (7)

B(r , t) ≈
NF

∑
i

bi(t) Fi(r), Fi ∈ H(div,Ω) (8)

which upon substitution into (4) yields the semi-discrete system of ordinary differential equations

Mε
∂
∂t

e = KTMµ b (9)

∂
∂t

b = −K e

Here, K is the discrete curl matrix,Mε, Mµ are the mass matrices associated with basis functions{W i}, {Fi}, respectively,
ande,b are vectors of the electric and magnetic field degrees of freedom. For a fixed integerp, the finite dimensional spaces

Wp = span[W1,W2, . . . ,WNW ] ⊂ H(curl,Ω)

Fp = span[F1,F2, . . . ,FNF ] ⊂ H(div,Ω)

are contained in the polynomial spaces

ΠW = Qp−1,p,p⊗Qp,p−1,p⊗Qp,p,p−1

ΠF = Qp,p−1,p−1⊗Qp−1,p,p−1⊗Qp−1,p−1,p

whereQl ,m,n denotes a polynomial in the variables(x,y,z) whose maximum degree isl in x, m in y and n in z. The vector
polynomial basis functions{W i}, {Fi} are defined piecewise on the hexahedral elements of a computational grid through a
transformation of vector polynomial basis functions defined on a unit reference element 0≤ x,y,z≤ 1. Although simply stated,
this is a complicated procedure and details of their construction can be found in [6]. For a polynomial basis orderp, the
approximation of (7) isp+1 order accurate in∆h, the characteristic volume of the hexahedral element.

High order and energy conserving time-integration of (9) isgiven by a generalized symplectic update [9]
[

en+1

bn+1

]

=

(

k

∏
i=1

Qi

)

[

en

bn

]

(10)

wherek is the order of the symplectic integration method and the matricesQi are of the form

Qi =

[

I βi ∆t M−1
ε KTMµ

−αi ∆tK I − αi βi ∆t2K M−1
ε KTMµ

]

(11)

and∆t is the discrete time step. The integration coefficients in (11) are listed in Table I. In this particular mixed finite element
method the instantaneous energy is the numerical version ofthe total energy stored in the electric and magnetic fields. It is
computed as

Ẽ = eTMε e+bTMµ b (12)
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Order 1

α1 = 1 β1 = 1

Order 2

α1 = 1/2 β1 = 0
α2 = 1/2 β2 = 1

Order 3

α1 = 2/3 β1 = 7/24
α2 = −2/3 β2 = 3/4
α3 = 1 β3 = −1/24

TABLE I

SYMPLECTIC INTEGRATION COEFFICIENTS FORMETHODS OFORDER 1,2 AND 3

III. N UMERICAL RESULTS

In the following computational experiments, we simulate the propagation of an optical pulse along a 155µm section of a
single mode optical fiber. The core of the fiber has a radius of 5µmand an index of refraction of 1.471 while the cladding has
a radius of 40µm and an index of refraction of 1.456. With these properties, the fiber is capable of propagating aλ = 1.55µm
optical wave. The ratio of problem domain size to wavelengthis thereforeΩ/λ = 100 making this an “electrically large”
problem. The problem is excited with a space and time dependent pulsed voltage source boundary condition applied to the
input cap of the fiber representing a TE01 polarized mode. Thespatial dependence of the voltage source is derived from Bessel
functions of the first and second kind with the appropriate transverse propagation constants to satisfy continuity across the
core / cladding interface while the temporal profile is a Gaussian pulsed sine wave containing 20 wavelengths as shown in
Figure 1.

Fig. 1. Spatial and temporal profile of pulsed voltage used to excite fiber optic simulation

We perform the simulation using a straight fiber as referenceand four bent fibers with different bend angles as summarized
in Table II. The loss due to curvature of an optical fiber has been studied extensively and it is well well known that fiber
waveguides lose power by radiation if their propagation axes are curved. As pointed out in [4], even if the standard radiation loss
of the fiber is disregarded, the field changes its shape in the curved guide (known as the bend loss); the field is forced toward
the outer wall in a manner resembling a centrifugal force effect. Only for very large bending radius values is it permissible
to neglect this effect; for sharply curved guides the field distortion caused by the bend has a considerable influence on the
curvature loss. Bending losses in fibers are therefore classified as either macro-scale or micro-scale. It is well known that losses
due to macro-scale bends where the bending radius is greaterthan 10cm are essentially negligible [12]. Transmission in a fiber
with a bending radius smaller than this is subject to signal loss due to radiation and bend loss [3].

We decompose the domain of the fiber into a mesh of hexahedral elements and two material regions, namely the core and
the cladding. Because the problem is electrically large, itwill be subject to the cumulative errors of numerical dispersion. To
mitigate this effect, we use high order polynomial basis functions of degreep= 2 in conjunction with a high order symplectic
(energy conserving) integrator of orderk = 3 which has been shown to excel at reducing the effects of numerical dispersion
for electrically large time domain problems [6]. The computational mesh for each of the five simulations consists of 147,200
hexahedral elements with 4 transverse elements per wavelength, an example of which is shown in Figure 2. Note that 4
transverse elements per wavelength is significantly less than the commonly used heuristic of 10 transverse cells per wavelength
for standard low order finite element approximations. Usinghigh orderp = 2 basis functions on this mesh results in a semi-
discrete linear system (9) consisting of 3,562,160 electric field unknowns and 3,547,072 magnetic flux density unknowns.
This relatively large problem must therefore be solved in a parallel computational environment. The computational statistics
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Bend Angle Bend Radius Fiber Length

00 (straight) ∞ 155 µm
150 592.056µm 155 µm
300 296.028µm 155 µm
450 197.352µm 155 µm
600 148.014µm 155 µm

TABLE II

BEND ANGLE AND RADIUS FOR VARIOUS FIBER OPTIC MESHES

for each of the five simulations are summarized in Table III.

Fig. 2. Example of the computational fiber mesh

In Figure 3 we plot the normalized energy in the fiber core, computed by (12), as a function of time for each of the five
fiber simulations. The energy is normalized to the total energy of the optical pulse. As expected, the energy in the straight
fiber is confined in the core for the duration of the simulationand is roughly 86% of the total pulse energy. As the fiber is
bent, the energy in the core is lost due to radiation in the cladding as the pulse traverses the bend. This effect becomes more
drastic as the bend angle (bend radius) increases (decreases) and as time increases. Note that for the 60 degree bent fiber,
the core energy loss at timet = 0.36ps is very close to 100%. In Figure 3 we plot the base 10 log of the electromagnetic
field energy, as computed by (12), for the 30 degree bent fiber at four separate snapshots in time. As the pulse traverses the
bend, the majority of the energy is radiated into the cladding, and the remaining energy still guided in the core diminishes
rapidly as a function of time. It is important to point out that the cladding radius of 40µmwe have used for our simulations is
significantly smaller than the typical radius of 120µm used in commercial grade single mode fibers. This is due to thelimits
of computational resources.

In Figure 5–Figure 9 we plot the base 10 log of the magnitude ofthe Poynting field, log10(
√

P·P) whereP= E×B, at time
t = 0.36ps for each of the five fiber simulations. The Poynting field can beused as a measure of power loss in the fiber core.
Note that the majority of the power is confined in the core for the case of the straight fiber while the power loss increases
dramatically as the fiber is bent. In Figure 10–Figure 14 we plot a two dimensional “slice” of the electric field vector at time
t = 0.36ps for each of the five fiber simulations. Each plot is sliced in a plane that is normal to the tangent curve of the fiber
bend. Note that for the straight fiber, the electric field remains circularly polarized as one would expect for a TE01 mode.
However, as the bend angle increases and the electric field begins to radiate into the cladding, the orientation of the electric
field becomes considerably more complex.
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No. Hexahedral Mesh Elements 147,200
No. E-Field Unknowns 3,562,160
No. B-Field Unknowns 3,547,072
No. Parallel CPUs Per Simulation 64
Total Physical Time 0.73333 ps
Discrete Time Step 3.3333e-4 ps
No. Time Steps 2200
No. Linear Solves Per Step 3

TABLE III

SUMMARY OF COMPUTATIONAL STATISTICS FOR FIBER SIMULATIONS
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Fig. 3. Normalized core energy as a function of time for each of the five fiber simulations

IV. CONCLUSIONS

Computer modeling of wave propagation in complicated optical communication devices is difficult to perform because of the
complex geometries and the highly restrictive time scales.However, the progress of vector finite element modeling coupled with
the advances in high speed computing environments has now made it possible to perform these complicated simulations and
to make accurate measurements of interest to the optical engineering community. This was demonstrated here by modelingfor
the first time the classical problem of wave propagation in a bent optical fiber using the full wave Maxwell’s equations. Power
loss measurements and polarization distortions were computed as the fiber underwent various degrees of bending. The vector
finite element method using high order Nedelec basis functions along with symplectic time integration schemes providedthe
numerical approximations. Thus, continuity properties ofthe fields across interfaces were maintained, energy was conserved in
the semi-discrete sense and the detrimental effects of numerical dispersion which commonly plague electrically largeproblems
such as these were kept to a minimum.

REFERENCES

[1] C. Vassallo,Optical Waveguide Concepts. Elsevier Sci. Pub., 1991.
[2] F. Wilczewski, “Bending loss of leaky modes in optical fibers with arbitrary index profiles,”Optics Lett., vol. 9, pp. 1031–1033, 1994.
[3] W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvatureand microbending losses in single-mode fibres,”Optical and Quantum Electronics,

vol. 11, no. 1, pp. 43–5, 1979.
[4] D. Marcuse, “Curvature loss formula for optical fibers,”J. Opt. Soc. Am., vol. 66, no. 3, pp. 216–220, 1976.
[5] G. Rodrigue and D. White, “A vector finite element time-domainmethod for solving Maxwell’s equations on unstructured hexahedral grids,”SIAM J.

Sci. Comp., vol. 23, no. 3, pp. 683–706, 2001.
[6] R. Rieben, G. Rodrigue, and D. White, “A high order mixed vector finite element method for solving the time dependent Maxwellequations on

unstructured grids,”J. Comput. Phys., October 2004, in press.



6
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Fig. 5. Snapshot at timet = 0.36ps of base 10
log of Poynting field magnitude for straight fiber.

Fig. 6. Snapshot at timet = 0.36ps of base 10
log of Poynting field magnitude for 15 degree bent
fiber.

Fig. 7. Snapshot at timet = 0.36ps of base 10
log of Poynting field magnitude for 30 degree bent
fiber.
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Fig. 8. Snapshot at timet = 0.36ps of base 10 log of Poynting field
magnitude for 45 degree bent fiber.

Fig. 9. Snapshot at timet = 0.36ps of base 10 log of Poynting field
magnitude for 60 degree bent fiber.

Fig. 10. Snapshot at timet = 0.36ps of electric
field vector for straight fiber sliced in a plane with
unit normal(0,0,1).

Fig. 11. Snapshot at timet = 0.36ps of electric
field vector for 15 degree bent fiber sliced in a
plane with unit normal(−0.111,0,0.994).

Fig. 12. Snapshot at timet = 0.36ps of electric
field vector for 30 degree bent fiber sliced in a
plane with unit normal(−0.221,0,0.975).
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Fig. 13. Snapshot at timet = 0.36ps of electric field vector for 45 degre
bent fiber sliced in a plane with unit normal(−0.328,0,0.945).

Fig. 14. Snapshot at timet = 0.36ps of electric field vector for 60 degree
bent fiber sliced in a plane with unit normal(−0.431,0,0.902).


